
15.1-15.2) Double Integrals

A rectangular region in the x,y plane is a region R  x,y  x  a,b, y  c,d 
a,b  c,d, where a  b and c  d. Technically, this is a closed region bounded by a
rectangle. Casually speaking, we may refer to this region as a “rectangle” (but bear in mind,
we mean to include the interior of the rectangle, as well as the rectangle itself).

A double integral over rectangle R is  
R
fx,y dA. This may be iterated in two possible

ways (Fubini’s Theorem guarantees these are equivalent, so long as f is continuous on R:

 
a

b


c

d

fx,y dy dx

 
c

d


a

b

fx,y dx dy

Example One: Let R  1,2  0,.  
D
y sinxy dA might be iterated as either


1

2


0



y sinxy dy dx or 
0




1

2

y sinxy dx dy. Which iteration should we choose? Clearly the

second way is easier, since the first way would require integration by parts (twice!!). Note

that the second way can also be written as 
0



y 
1

2

sinxy dx dy.


1

2

sinxy dx   1
y cosxy

x1

x2
 1

y cosxyx2
x1  1

y cosy  cos2y

Thus we get 
0



y  1
y cosy  cos2y dy  

0



cosy  cos2y dy  siny  1
2 sin2y

0


 0

The Integral Factorization Principle: Suppose fx,y can be factored into a product of two
functions, one depending only on x and the other depending only on y, say rxsy. Then


a

b


c

d

fx,y dy dx  
a

b


c

d

rxsy dy dx  
a

b

rx 
c

d

sy dy dx  
c

d

sy dy 
a

b

rx dx, or


a

b

rx dx 
c

d

sy dy.

1



Example Two: 
0

3


1

2

x2y dy dx  
0

3

x2 dx 
1

2

y dy  1
3 x

3
0

3 1
2 y

2
1

2


1
3 27  0 1

2 4  1  9 3
2  

27
2

A Type I region in the x,y plane is a region D  x,y  x  a,b, g1x  y  g2x. If D is

a Type I region, then  
D
fx,y dA  

a

b


g1x

g2x

fx,y dy dx. This is a Type I double integral.

A Type II region in the x,y plane is a region D  x,y  y  c,d, h1y  x  h2y. If D

is a Type II region, then  
D
fx,y dA  

c

d


h1y

h2y

fx,y dx dy. This is a Type II double integral.

Fubini’s Theorem does not apply to double integrals over Type I or II regions; we cannot

rewrite 
a

b


g1x

g2x

fx,y dy dx as 
g1x

g2x


a

b

fx,y dx dy, and we cannot rewrite 
c

d


h1y

h2y

fx,y dx dy as


h1y

h2y


c

d

fx,y dy dx.

Example Three: Let D be the region bounded by the parabolas y  2x2 and y  x2  1,
which intersect at the points 1,2 and 1,2. This is a Type I region.

 
D
x  2y dA  

1

1


2x2

x21

x  2y dy dx.


2x2

x21

x  2y dy  xy  y2 y2x2
yx21  xx2  1  x2  12  x2x2  2x22 

x3  x  x4  2x2  1  2x3  4x4 
x3  x  x4  2x2  1  2x3  4x4 
3x4  x3  2x2  x  1

So we get 
1

1

3x4  x3  2x2  x  1dx   3
5 x

5  1
4 x

4  2
3 x

3  1
2 x

2  x
1
1



 3
5  1

4  2
3  1

2  1   3
5  1

4  2
3  1

2  1 

 3
5  1

4  2
3  1

2  1  3
5  1

4  2
3  1

2  1 

 6
5  4

3  2   18
15  20

15  30
15  32

15 .

Sometimes it is necessary to reiterate a Type I integral as Type II, or vice versa...
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Example Four: The double integral 
0

1


x

1

siny2 dy dx is Type I.

D  x,y  x  0,1, x  y  1. The lower boundary of D is the line y  x and the upper
boundary is the line y  1, and these lines intersect at the point 1,1. D also has the
vertical boundary line x  0. D is thus a right triangle with vertices 0,0, 0,1, and 1,1,
with the right angle at 0,1.

The problem is that, with the integral iterated this way, we are unable to antidifferentiate–the
antiderivative of siny2 is a non-elementary function. To circumvent this problem, we
reiterate the integral as a Type II integral.

When we look at D as a Type II region, the “lower” boundary is the line x  0 and the
“upper” boundary is the line x  y. Thus, from a Type II perspective, D 
x,y  y  0,1, 0  x  y.


0

1


x

1

siny2 dy dx  
0

1


0

y

siny2 dx dy  
0

1

siny2 
0

y

dx dy


0

y

dx  x0
y  y, so we obtain 

0

1

siny2 y dy

We can evaluate this with an ordinary Calculus I substitution. Let u  y2 so du  2y dy, and

1
2 du  y dy. When y  0, u  0, and when y  1, u  1. Hence, 

0

1

siny2 y dy 


0

1

sinu 1
2 du  1

2 
0

1

sinu du  1
2 cosu0

1  1
2 cosu1

0  1
2 cos0  cos1  1

2 1  cos1

We aren’t always given an integration problem where the integral is already set
up–sometimes we have to set up the integral ourselves. In such cases, the challenge is to
figure out the region in the x,y plane over which we are integrating. If we are lucky, the
region will be rectangular, but otherwise we must figure out whether to analyze the region as
Type I or Type II.

Example Five: Find the volume of the solid bounded by the elliptic paraboloid
x2  2y2  z  16, the planes x  2 and y  2, and the three coordinate planes. Solution:
The three coordinate planes are z  0, which is the x,y plane, y  0, which is the x, z plane,
and x  0, which is the y, z plane. The region of integration in the x,y plane is the rectangle
bounded by the vertical lines x  0 and x  2, and by the horizontal lines y  0 and y  2,

i.e., R  0,2  0,2. Here fx  16  x2  2y2, so the volume is 
0

2


0

2

16  x2  2y2 dy dx.
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When we evaluate this integral, we get 48.

Example Six: Find the volume of a tetrahedron (i.e., a pyramid with a triangular base)
bounded by the planes x  2y  z  2, y  1

2 x, x  0, and z  0. Solution: Notice that z  0
is a horizontal plane (i.e., it is the x,y plane), y  1

2 x and x  0 are vertical planes (the latter
is the y, z plane), and x  2y  z  2 is an oblique plane (it has x intercept 2, y intercept 1, and
z intercept 2. The intersection of the planes z  0 and x  0 is the y axis, the intersection of
the planes z  0 and y  1

2 x is the line y  1
2 x, and the intersection of the planes z  0 and

x  2y  z  2 is the line x  2y  2, i.e., y   1
2 x  1. D is the region in the x,y plane

bounded by the y axis and by the lines y  1
2 x and y   1

2 x  1. This is a triangular region
with vertices 0,0, 0,1, and 1, 1

2 . This is best viewed as a Type I region. Here,

fx  2  x  2y, so the volume is 
0

1


1
2
x

 1
2
x1

2  x  2y dy dx. When we evaluate this integral,

we get 1
3 .

The Integral Factorization Principle does not apply to double integrals over Type I or II

regions; we cannot rewrite 
a

b


g1x

g2x

rxsy dy dx as 
a

b

rx dx 
g1x

g2x

sy dy, and we cannot rewrite


c

d


h1y

h2y

rxsy dx dy as 
c

d

sy dy 
h1y

h2y

rx dx. However, we can write the former integral as


a

b

rx 
g1x

g2x

sy dy dx, and we can write the latter integral as 
c

d

sy 
h1y

h2y

rx dx dy. (We cannot

factor the inner integral out of the outer integral, because the boundaries of integration of
the inner integral involve the variable of integration for the outer integral.)

1. If Sy is an antiderivative of sy with respect to y, then 
g1x

g2x

sy dy  Syg1x
g2x 

Sg2x  Sg1x, and so 
a

b

rx 
g1x

g2x

sy dy dx  
a

b

rxSg2x  Sg1xdx.

2. If Ry is an antiderivative of ry with respect to y, then 
h1y

h2y

rx dx  Rxh1y
h2y 

Rh2y  Rh1y, and so 
c

d

sy 
h1y

h2y

rx dx dy  
c

d

syRh2y  Rh1ydy.

Example Seven: 
2

4


1
2
y23

y1

xy dx dy  
2

4

y 
1
2
y23

y1

x dx dy. Let us work this problem using

formula 2. Here, rx  x and sy  y. Rx  1
2 x

2, so Ry  1  1
2 y  12 
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1
2 y

2  2y  1, and R 1
2 y

2  3  1
2 

1
2 y

2  32  1
2 

1
4 y

4  3y2  9. Hence, we obtain


2

4

y 1
2 y

2  2y  1  1
2 

1
4 y

4  3y2  9 dy  1
2 

2

4

y y2  2y  1  1
4 y

4  3y2  9 dy 

1
2 

2

4

y 4y2  2y  1
4 y

4  8 dy  1
2 

2

4

4y3  2y2  1
4 y

5  8y dy 


2

4

2y3  y2  1
8 y

5  4y dy  1
2 y

4  1
3 y

3  1
48 y

6  2y2
2
4

 36.
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